Nonequilibrium landscape theory of neural networks.

نویسندگان

  • Han Yan
  • Lei Zhao
  • Liang Hu
  • Xidi Wang
  • Erkang Wang
  • Jin Wang
چکیده

The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations.

We established a theoretical framework for studying nonequilibrium networks with two distinct natures essential for characterizing the global probabilistic dynamics: the underlying potential landscape and the corresponding curl flux. We applied the idea to a biochemical oscillation network and found that the underlying potential landscape for the oscillation limit cycle has a distinct closed ri...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 45  شماره 

صفحات  -

تاریخ انتشار 2013